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ABSTRACT

Consider a p-variate normal population N (PE), with o known and Z

unknown. Without loss or generality, we take 'P = 0. Sup,-,. That we

have an incomplete multiresponse sample, i.e., we have samples available

from this population and/or its various marginals. Suppose one Is

interested in estimating E, given that all the correlations are known.

Consider the Fisher information matrix "i, corresponding t, the

estimation of the variances att" Consider the marginal involving the

responses il,i 2, ... ,i , and suppose that from this marginal a sample of

n(il,i 2 ,.. ,ik) is drawn. It is then seen that H is a linear function of

the n's. Suppose that the cost of taking an observation on the jth

response is 0 , and that a total amount of money 4p' is available for the0

collection of samples. The p-oblem considered in this paper is the

following. How to choose the n's subject to the cost restriction, such

that the determinant of H is maximized. A complete solution is obtained

for the case p = 2. When p = 3, some partial results are obtained. In

particular, it is shown that when all the costs are equal, and the corre-

lations are equal, then the best design is obtained by using a complete

sample.
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1. Introduction

In most experiments or investigations, usually more than one response

or characteristic is measured on an experimental unit or individual. The

interest very often lies in estimating certain parameters (usually of

the location or scale type) on each response. It is well known that, in

general, as the number of units on which a response is observed is in-

creased, the efficiency of the estimate also increases. However, in

general, one is fa-ed with financial limitations. In other words,

there is a certain cost •. of measuring the jth response on a single unit,

and there is a cost tp of having a unit available for the experiment.
0

Furthermore, a certain total amount of money (say, 1) is allotted for the

experiment. In this situation, not only the number of observations that

can be taken on any response is bounded, the number of observations on

other responses decreases as the number of observations on a particular

response is increased. This indicates that an overall measure of the

efficiency of the whole multiresponse experiment is desireable. Also,

the number of observations to be taken on the different responses should

be determined so as to maximize the overall efficiency of the whole

experiment. This is an important aspect of the subject of multiresponse

designs.

Certain problems in this field have been studied before. For example,

suppose the interest lies in the estimation of the differences between

the true effects of a set of v treatments on each of a set of p responses.

Thus there will be v - 1 linedrly '_Iependent ýompdrioons for each

i.
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response, giving rise to p(v-l) estimators. Let K denote the p(v-l) x

p(v-1) variance matrix of these estimators. In Srivastava and McDonald

(1969), the problem of obtaining the optimal multiresponse design (with

respect to the minimization of tr. K) is considered. This paper is

concerned with the case of randomized block designs. A similar paper

involving cyclic PBIB designs was considered in Srivastava and McDonald

(1970). The first problem under the determinant criterion was considered

in Srivastava and McDonald (1971).

A multiresponse design problem, posed in a somewhat different fashion

has been considered by Hocking and Smith (1971).

In this paper, we consider a multiresponse design problem when such

parameters are to be estimated. The optimization under the given cost

restriction, is done with respect to maximizing the determinant of the

fixed information matrix cnrresponding to these parameters.

2. Preliminaries.

Consider the problem of designing an experiment for estimating the

unknown dispersion matrix E = ((a ts)), (t,s = 1,2,...,p) of a p-variate

normal distribution whose mean vector is assumed to be known and equal

to zero. (This choice of the known value of the mean causes no loss

of generality). The collection of data, for this purpose, could be in

the form of a general incomplete multiresponse sample. This sample is

divided into subsamples, sj (5 = l,w,..,u = 2p- 1) such that on every

experimental unit in S., exactly the subset R. (where R. = {I 51]£j' 52'

.. 1}) of iesponses is measured. Thus u -s the number of all non-
J

empty subsets of {l,2,...,p}, and n. is the number of units in S.. The
j I

subsets R. are assumed to be ordered in any arbitrary but fixed manner.
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We also assume that the elements of R. are such that 1 < Z < J. <...< t. < p.
3 - i j2 Ip-

The principal submatrix of E corresnonding to R. is denoted by E..
] V

For any response r, we define U as the unior of sets S. the union beingr]

taken over all j such that rER.. Thus, U is the set of all units on] r

which response r (possibly along with other responses: is measured. We

shall also assume a cost restriction of the form mentioned in the intro-

duction, and without loss of generality, label the resnonses such that

1 .. < (p.

Our objective is to obtain an optimal set of values of the n. under
I

these cost limitations. By "optimal" we mean the sample should be such

as to maximize the "amount of information" obtained from the data within

our financial limitations.

In this paper, we choose our measure of information to be the

determinant of Fisher's information matrix H. For convenience of

reference, we may state here the definition of H. Suppose in any given

situatior,, one is interested in estimating a set of parameters 61,..*m,

and suppose L denotes the likelihood of the sample. Then H ((h..))13

is (mxm), and h.. E {-a 2log L/aO. Q.}, where E denotes "expectation".

Note that the dispersion matrix X, of the estimators is asymptotically

proportional to the inverse of Fisher's information matrix when these

estimators are maximum likelihood estimators, or belong to the class of

asymptotically efficient estimators. Also, a plausible property of the

determinant criterion is the fact that the det. H and det. V are,

respectively, directly and inversely proportional to the volume of the

ellipsoid of concentration. See, for example, Roy, Gnanadesiken and

Srivastava (1971).
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A design D, in this study, is a detarmination of the vector n

(nl 'n 2  " ... ,n u), specifying, for each subset of responses, the experimental

units on which this subset of responses is to ba measured. The n.'s mustI

satisfy the cost restriction,

u
(2.1) 1 E (C n,,

j=l -]

where .j 0 +o + •£ j2+...+ ýk. Under each design D, the

criterion of optimization is represented by [det. H(D)] = Q(D), say,

where H(D) is the matrix H corresponding to the design D. Thus we are

faced with an optimization problem in which Q is the objective function

and (2 . 1) is the constraint. It should be pointed out that the n.'s
I

should also be positive and take on integer values only. However, for

practical 7onsiderations, the latter requirement shall be overlooked.

The cost associated with a design D shall be denoted by M(D).

Definition 2.1 A design D is said to be at least as good as a design

D', if Q(D) > Q(D') and 4(D) < *(D'). Moreover, if any of the two

inequalities becomes strict, then D is said to be better and D' is said

to be inadmissible.

Definition 2.2 A (sub) class C of designs is said to be essentially

complete in the class C', if C C C' and for any D'EC', there exists a

DeC, such that D is as good as D'.

3. The case E = 8A, A known.

Here, we shall assume that the positive number e is the only

unknown, and A is a positive definite matrix. An easy computation then

gives

.4
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Thus we must find n's so as to maximize Z n.p. subject to (2.1).
j=1

This is equivalent to maximizing Z*n!, subject to E*(C /p.)n! = 1, where

E* denotes summation over jEJ, where J = {j~p j 0). Let j* be a value

of j such that (cj/pj) attains a minimum (over restriction of j in J) when

j j*. Then clearly, a solution of the problem is: Take n. 0 O, if
I

j # j*, and take n, P (1/y.,). This clearly leads to

Theorem 3.1 Let C*: (i + i +''+-r); r = 1,..,p. Let n* be the size
r o r

of the sample from the marginal distribution of responses 1,2,..r . Let

r* be such that ) max {r/0} . Then the optimal design is

obtained by taking a sample of size (1/C*,) from the marginal of responses

1,2,..,r* . Clearly, the optimal design is an HM design. Also, it is

easily checked that this HM design reduces to an SM design if and only

if p < Cpl/P-1).

4. The case of uncorrelated responses.

In the case of uncorrelated responses, the Fisher's information matrix

2H reduces to a diagonal matrix with htt= (2N t)/t , (t = 1,2,...,p)

where N E n.. Our problem is to maximize the objective function
t jEU~ t

b

Q = H Nt, subject to the cost restriction (2.1), which is now equivalent
t=l b

to o N + E tNt = 1. The following result can then be proved in a way
t=1

parallel to theorem 4.2 in Srivastava and McDonald (1971).
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Theorem 4.1. Let ml,... ,mp denote respectively the values of N1 ,...,Np

which maximizes Q subject to the above cost restriction.

(a) Let k be the first integer such that

(4.1) (k -
2 )*k _ 1 - 2' (K - l)Pk >k - 1

where * = + +...'''•O, and k can take the values 2, 3,..., p. Then

the optimal design is an HM design with
(4.2) mI ... ink1  (k-l)/(pC_), and m. = i/pik, (j=k,..,p).

k1k-1 I

(b) If (4.1) does not hold for any value of k(2 < k < p), then

we have the SM model with mI = m2 = ... = mp

5. The case p = 2, and known correlation.

For the case of a bivariate population, let n1 and n2 be the sizes

of the univariate samples fr~om the marginals of the first and second

responses, respectively. The size of the bivariate sample will be denoted

by n3 . Also, p will denote the correlation coefficient P1 2. The Fisher's

information matrix H is given by

F 1 2 P 2  1 p 2

S22
(5.1) aI 1-p 12 1- p

H :2
1 2(n 2 1 n 2-p n)

01a2 1-p 1 2 2  1 - 3

We proceed now to find the optimum design under the determinant

criterion. We want to choose nl, n 2 and n 3 so as to maximize l!" or,

equivalently,

2
(5.2) Q Z n1 n2 + a(n 1 + n2 )n 3 + bn 3 2, subject to

(5.3) d = n1d1 + n2d2 + n3 9 where

6
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(5.4) a (2 - p2)/2(l - p2) b 1/(1 - p2) d +/(p0 + +

di 4 0 + 1 )/I(60 + ¢1 + 0 2)' d 2  4 0 + 2)/( 0 + + +2).

The inequalities dl < d2 , 0 < dl < 1, 0 < d < 1, dl + d2 1 , a b + 1

1- . . . . . 2

and b > a > 1, can be easily checked.

Theorem 5.1. The sub class C* of HM designs is essentially complete in the

class C of GIM designs.

Proof: The assumption eI 1 <2 implies that a design D(nl,n 2 ,n 3 ) in which

n, L n2 is at least as good as the de~ign D'(n 2 ,nl,n 3 ). Consequently,

designs like D' shall be ignored. Thus let DEC. Construct D*(ml,m 2 ,m 3)

as follows. Take mI = n1 -n 2 , m2 = 0, and m3 = n2 + n 3. The design D*

is of the HM type and an equivalent way of constructing it is to measure

the first response on n + n 3 experimental units, then measure the second

response on a subset of these units of size n2 + n3 . We have

Q(D*) = mlm2 + a(m1 + m2)m3 + bm3
2  a(n I - n2 )(n 2 + n3 ) + b(n 2 + n3 )

It follows that Q(D*) - Q(D) = (a - l)nln2 + (b - a)n 2 + 2(b - a)n2n3 > 0.

We also find that p(D) - *(D*) = 10 n2 > 0. This completes the proof.

Thus, we will restrict attention to HM designs only, by taking n2 = 0,

and nl,n 3 > 0. Our problem is reduced to that of maximizing Q = anln3 + bn 3
2 ,

subject to d = d1nI + n3 , nl,n 3 > 0. It is obvious here that the choice

n3 = 0, is never optimal. Now, n 3 = d - n1di, and hence Q = (d1n1 - d)

[(bd - a)n - bd]. By considering the roots of this quadratic in nl, one

can easily prove

Theorem 5.2: A necessary and sufficient condition for the SM model to be

optimal is that (*2/ *0 + *I) < (2 + p 2)/(2 - p 2). Otherwise the HM design

with n, 7 d(2bd - a)/2d (bd - a) and n3 = da / 2(a - bdl), is the optimal

one.

7



6. The case p = 3.

Consider a general incomplete sample from a 3-variate normal population.

Let us assume that the variances are unknown, while the (3 x 3) correlation

matrix ( ( rs ) ) (r,s = 1,2,3) is known and the mean is equal to the zero

vector. For simplicity we shall use the notation: Pjk = Pi' where (i,j,k)

c F, and F is the set of (the six) permutations of (1,2,3). Thus this

notation means 023 = P = Pi Pl2 = P21 = P = P31 P2"

after some calculations, that the elements h.. of Fisher's information1]

matrix, in this case, are (for (i,j,k)£F) given by

(6.1) h. = a.2 [2n. + a.n + a n + b n h = (ij)-l (C kn11 1 1 ] 3 aknik bi123]' ij kV3

+ dknij), where

2-P. 1-P. 2 PP2P -P. 2 -P2
a. = 1 , b. = 1 + 1 ,c. = 123 1,d1-p 2  1 - 1

-P.A A 1-P.1 1

I((p ))I = 1- E P2 +iji=1 i 2Pl 2 39

and where ni(i=l,2,3), nji(i~j; i,j = 1,2,3) and n1 2 3 are, respectively,

the sample sizes from the corresponding univariate marginals, bivariate

marginals and the parent distribution. Define, for (i,j,k)EF,

3
(6.2) m. a. hii', Pk = a.a.h ij, gi = -0 +il. f = Erl f'. = f -

Assume that thr' total money available for taking samples is 1. Our

objective is to find a determindLion of n' = (nl,n 2 ,n 3 ,n 1 2 ,n 1 3 ,n 2 3 ,n 1 2 3)

which maximizes IHI or, equivalently, the quantity Q, where

(6.3) Q a2 a22o3 1 HI m1 m2 m3 + 2Plj2P3 -mlP 12 m22v 2  m3 P32

8



subject to the cost restriction

(6.4) 1 = gInl+ g2n + g 3 n 3 + f1n23 + f2n13 + f3n12 + fnl23.

A direct attack on this problem, by way of expanding Q as a cubic in the

7 elements of n, seems to be unwieldy. The subsequent sections will offer

alternative methods of approach.

7. The perturbation method.

We start by assuming that the design D(n) is optimal, i.e. for any

other design D +(n ) we have Q(D ) f Q(D), and W(D) = P(D = 1. This means

that Q has a global maximum at the point n determined by 9. Let us displace

the point n to the point n + 6. Suppose this results in a displacement

of (m1 ,m2 ,m 3, , 1 9V2,1'3 ) by the increments (E,E 2 ,- 3 ,e CV 2,63), respectively.

The value of Q undergoes the change:

(7.1) Q(n + 6) - Q(n) = Z* [1/2 i(m mk 0i2) + O(i(i Pk - m. iW)] + PO(71 ~_ +_) _ 1 k i iik 1

= P1 + P., say

where Z* shall always denote summation over all triplets (i,j,k)EF, and

where P is a polynomial of c's and O's of the third degree and

(7.2) E. = 26 + a 6 + a 6 + b0 6 = d.6 + c 61 akij ajik bi123" 1 igjk ci123"

The sign of Q(n + 6) - Q(n) is the same as that of Pl' provided that 6 and

consequently the c's and the O's are such that P0 is negligible compared

to P By the use of (7.2), the polynomial P1 can be expressed directly

in terms of 6 as:

9
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3
(7.3) P1 = (1/2)E*[(i)6"i + 6 ij(a ki + a k j) 2Tkdk)] + 6123 .Z (bi. +2T. i )

2

where Oi = mjmk - ,i 2 Ti. = Uk . -m.i.i" Because of the cost condition

(6.4). the components of 6 satisfy

(7.4) g1 6 1 + g2 2 + g 36 3 + f 3 61 2 + f 2613 + f 16 2 3 + f61 2 3 = 0.

It is interesting to note that the O's and the T's are the six different

cofactors of the ('; x 3) matrix ((g..)), where g.. = a a ih

Theorem 7.1: A d&sign D(n) is not optimal if there exists a 6 such that

D(n + V_ is a design, P1 is positive and F0.1 <__IPI!.

Proof: The proof is evident from the preceding development.

This result will be applied to some important special cases.

The SM model. For the SM model we have all the n's equal to zero, except

n1 2 3  /r = m, say. Consequently, for (i,j,k)cF, we also have

2 2 2
Oi = m (b bk - ci ), T'i = (c ck- bici )m . Thus

(7.5) Pl m 2 Z [a.8.6 i + (1/2)(a ki + a kaj + d kB k) .. + (1/2)(bi a +

+ c.8a) M123], where

c., . (cc- b.c.).

bbk - ci , a. = 2(cjCk i i

Let a* denote the coefficient ul 6123 in (7.5), i.e.,

(7.6) a * ba + b2 a2 + b3 3 + c1 1 + c282 + c383.

10



Substituting in (7.5), the value of 6123 using the cost condition (7.4),

we get

(7.7) P1 (m2/2)* 1[(2d)l+(c +c
(7 = . - aegi/f)Si + (akai + a kj + dk k - clfk/f) 6 ij]

Invoking Theorem (6.1) and observing that the 6's in (7.7) must bc

nonnegative numbers (n + 6 is a design) which can be taken sufficiently

small so that JP.1 < IP11, we obtain

Corollary 7.1: A necessary condition for the Sh model tci be optimal is

that,

a* > (f) max (2a i/gi, (a.CL. + a ak + d V )/f.).
(i,j,k)cF i 1 1

The GIM Model.

Consider the GIM design D with n > 0, and let n denote the coefficient

of 6123 in (7.3), i.e.

(7.8) n = bl1l + b2 2 + b 3  3 + 2T1c1 + 2T 2 c 2 + 2T 3 c 3.

Substituting for 6123 from (7.4) in (7.3), we get

(7.9) P1 = Z*[(20 i - ngi/f)6 i + (ak i + ak j + 2 Tkdk - nfk/1 f)6 3](1/2)

According to theorem (7.1), a necessary condition for a design D to be

optimal, is that P1 be negative. Moreover, since the 6's can be both

negative and positive (the n's > 0), their coefficients must vanish. For

example, suppose that the coefficient of 639 say, is not zero, then we can

11



select all other 6's to be zero, and choose 63 to have the same sign as

that of its coefficient, thus giving risp io a positive value for Pl, which

implies that Q of (6.3) does not have a maximum at the point n determined

by D. We have established

Corollary 7.2. A necessary condition for the (GTM) design D(n > 0,

n2 > 0,...,n 1 2 3 > 0) to be optlmal is that all the following hold

simultaneously

(7.10) (a) ngi 2f~i ,(b) Dfi= (a.i4 - a. k + 2T1d1)f.

The conditions (7.10), in addition to the cost restriction (6.4)

form a set of seven equations in seven unknowns. Thus we could (theoretic-

ally) solve for the values of the n's. If a design specifies that some

subset of the n's of size x, say, must be zero, then in (7.10) we would

have (6 - x) equations and x inequalities. Again here, with the cost

restriction, we would have to solve (7 - x) equations for (7 - x) unknowns.

For any design D, this procedure determines the optimal values of the

positive n's in terms of the costs p. and the correlation coefficients
1

0.. Any two designs, then, can be compared according to the values of Q

arising from adopting each of them.

The HM model.

A choice of the vector n such that, say, n1 > 0, n 1 2 > 0, and

n123 > 0, while the rest of n's are equal to zero, gives rise to an HM

design. From (6.2) we have m. : 2n 1 + a 3 n 1 2 + b 1 n 1 2 3 , m2  2n 2 + a 3 n1 2 +

+ b m bn cn 1+ cn 0 d n +c n
b 2 n 1 2 3 ' m3  3 123' l clni 2 3 ' •2 2 123' '3 1 12 3 123"

12



From (7.4) we also get the corresponding values of •. and T . as1

2 2
i a a3b3n 12n123 + (b 2 b3 -c 1 )n1 23'

* = bO(2n + a n )n + ±')lb3 c22)n 2
2 3 1 312 123 13 2 123

ý* = 2a 3nln1 2 + a 2 d 2 ) 2 + [a(b + b) -2cd]nn n + 2bnln3 2 3 2 31 2 3 3 12 123 2 1 123

+ (b b c 22
21 3 123'

T* =[(c d _ a c )n -- 2c n ]n1 + (c c - c b l)n 12
1 23 31 12 11 123 23 11 123'

T : (Cd -a c2)n n 1 2 3 + (cc - c22)n123

T (Cc c -c b )n 2  - b d n n
3 1 2 3 3 123 3d3n12n123.

The quantity n defined in (7.8), after some simplification, takes on

the value

n 2(a3b2b3 + a 3 b1 b3 2b3c3d3 + 2c C2d3 a3c12 a3c22)n12n123
2 222

+4(b b3 c )nln + 2a b nln + b3(a - d 2)n 2
2 3 1 1 123 3 3 112 3 3 3 12

+ 3(blb b + 2c c2c - bc - b c2_ -b c 2)n 2
1 23 1 23 1 1 2 2 3 3 123*

Arguing as before, one arrives at

Corollary 7.3. A necessary condition for the optimality of an HM

design with nl, n 1 2 , n 1 2 3 > 0, is the simultaneous realization of

the following

(a) ngI = 2f€I, (b) nf 3 = (a 3 1 + a 3 q 2 + 2k 3 d 3 )f

(c) ng 2 > 2fo2 , (d) ng 3 > 2fo V

(e) nf 2 > (a 2 1 + a 2 3 + 2k 2 d 2 )f,

(f) nf 1> (al1 2 + a 1 3 + 2k d )f.

Again we remark here that (a) and (h) above with the cost restriction

1 = gln1 + f3n12 + fnl23 form a set of three equations from which we

find the values of n1 , n1 2 and n1 2 3. These values should satisfy the

inequalities (c), (d), (e) and (f).
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8. Designs with constant Q.

Given a design D, can we find a design D* that gives the same value

for the objective function Q as D does, i.e. Q(D*) = Q(D), while the cost

for D* is less than that for D. One simple way of achieving this is to

define D* such that the values of the m's and the P's (see (6.2) ) do not

change. This is equivalent to saying that the element of 6 satisfy the

following conditions, for (i,j,k) F.

(8.1) 26 i-+ ak6  + a + = 0b + = 0,i kij aj ik b1123 ' di 6 lk ci612 3

2f6123 + E*(gi 6 i + fi 6 ) < O.

Obviously, if such 6 exists and the design D(n + 6) has cost 1, then D(n)

is inadmissible.

From (8.1) we can solve, in terms of 6123, for the rest of the

unknowns and obtain

(8.2) 6 = (2dd k)-i (a cdk + a kCKdj - bidd k)61ik ~ k ki 123

S-1 El + P 2  (P iP j/P k) - (PiPk /P )6!23

6. (c /d )6 123 =- P2Y ( 2 -Pk2)/(Pk2] 62
1] k k 123 1~ 2 p k~ ~k )Ak 6123.

Substituting the above values in the inequality (8.1) and multiplying

both sides by 2d 1 d2d3 < 0, we obtain

14



(8.3) {E*[gidi(akckd. + a cjdk - bi ddk)(1/2) - ficidjdk] + 2fd1 d 2 d 3 }6 > 0.

Using (6.1), the last inequality is seen to be equivalent to

(8.4) [-(p1 P 2P3 /A)(1/p12 + 1/P22 + 1/p32)1 2 3

+ (11/2)(3 + p12 + p2 + p3 ) - 1/216123ý0 > 0.

By observing that the case p1 P2 P 3 • 0, gives rise to a positive value for

the term in brackets in (8.6), and makes (61,62,63) of the same sign as

6123, and 612,613,623 of a sign opposite to that of 6123, and using a

small negative value of 6123, we are led to

Theorem 8.1. A design D(n) in whi'h ý 1 ,n 2 ,n 3 and n1 2 3 are positive, is

inadmissible if PiP2p3 < 0.

In the following we shall assume that P1 = P2  p3 = P, say. For this

case, we get

(8.6) a. i = (2 - 2 ), 8. B 1 + (1 - 2 )/A,1 1

c. = c = (p - p 2)/A, d. = d = (-p 2)/(l - p 2), (i = 1,2,3).1 1

Theorem 8.2. If 1 < 2 and1 = P2 P3 , then we must have either
n 1 1n 2 , -13 1 n23' or both .

Proof: Suppose the theorem is not true, and let D(n) be a design in which

*I< n2 and r < n2 3 " Construct the design D*(n*) where n* = (n 2 ,nI,

n*nn12,n13'r23,n123). It follows the O(D) - O(D*) 4(2 - P )(n2 - n 1 0,

which means that D* costs less than, or as much as D. Now we shall compare

15



Q(D) with Q(D*). Let n2 - nI = 0 > 0 and n2 3 - n 1 3 = E> 0. We find

that m* = m + 28, m* = m, - 20, *= )I* 12 and P*= i It can
1 2 1 ~ ' ''~2 '2 3 3

easily be verified that

Q(D*) - Q(D) = 200' {a[2n3 + a(nl3 +n 2 3 ) + bn123)]- d[d(n 1 3 +

+ n 23) + 2cn 123]

Thus Q(D*) - Q(D) is > 0 if and only if 2an 3 + a 2 (n 1 3 + n) + abn1 23

Sd2(n13 + n2 3 ) + 2dcn 1 2 3 . From (8.6) we .Gee that a > 1 + Idl and

b > 1 + Ild , which implies that the preceding inequality always holds,

which in turn implies that Q(D*) > Q(D). This completes the proof.

9. The case of equal costs and correlation coefficients.

In this section we study the case where for all i, we have P. = and1

P. =O. We first state a result for later use.
1

Lemma 9.1. Consider a space S of dimension p(p + 1)/2, whose points

are non-negative definite symmetric matrices of size (p x p). Let BES

1

and let f(B) = IBIp. Then f is a concave function on S.

Proof: See, for example, Minc and Marcus (1964, P. 115).
a

Given BES, and/permutation a of the elements {l,2,...,p}, let a(B)

be a matrix obtained by permuting rows and columns of B (the same permuta-

tion for rows as for columns). We have fc (B)! = IBI. Let B* = 1L c(B)p! al• C(B

Lemma p.2. We hiave IB-I > II.

Proof: By Lemna 9.1, and the definition of concave function, we get

1 1 1 1

IB*Ip' =Il. ! (B)Ip > 1 1 - p(B)p 1 BI or
p! all -- p! all a p.- "Bp

IB*I > BI.

16



Now, for any design D(nl,n 2 ,n 3 ,n 1 2 ,n 1 3 ,n 2 3 ,n 1 2 3 ), construct

D*(l,9,,22 ,2,) V 29,n 123), where v, = (n + n2 + n3)/3, v2 = (n12 + n13 +

+ n 23)/3. Because of equal costs we have 4(D*) = 3(0,0 + 1U)v1 + 3(q0 + 2i)v2 +

(0 + 30)n123 = 4 0 4 0)(n + n2 + n 3) + (O0 + 2P)(n12 + n13 + n 23) +*I

(00 + 30)n 1 2 3 = O(D). And because of equal correlation coefficients we

can easily find that m* = m* = (M + m + m3)/3, and 1* = 2 =

+= ( + 2 + 11 )/3. Given any design D, let M be the (3 x 3) matrix
3 1 2 3

((min)), with miii = mi., m1 2 = '39 m13= and mi2 3 =l It is obvious

that Q(D) IMI. It can also be easily checked that M*: U cx(M).
3! = 1

From Lemma 9.1, it follows that IM*! > IMI, or Q(D*) > Q(D). We have

established

Theorem 9.1. Consider the case of equal costs and correlations. Given any

design D(nl,n 2 ,n 3 ,n 1 2 ,n 1 3 ,n 2 3 ,n 1 2 3 ), the design D*(VlV l,v9,v ,v 2 ,v 2 ,n 1 2 3)

is at least as good as D, where v1 (n + n2 + n 3)/3, and v2 (n12 +

+ n 1 3 + n 23)/3.

Remark: The extension of this result to general p is immediate.

Theorem 9.2: In the case of equal correlations, a design in which

nln29,n39n123 > 0, is inadmissible.

Proof: We shall follow the approach of keeping Q fixed and reducing the

cost described in section 8. From(8.4) we find that the coefficient of 0

is (1 - P)/(I + 2P). The fact A > 0 implies that p > -1/2, which in turn

implies that the coefficient of *0 is always positive. Thus we can take

6 < 0.

Formulas (8.5) also become

5, 6 = 6 = (1/1 + 206 123 6 6 = 623 = -(1 + p/1 + 2p)6 1 2 3
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This shows that 61,62 and 63 are of the same sign as 6123, while 612' 613

and 623 have a sign opposite to that of 6 123 The proof is completed by

continuing as in theorem 8.1.

Corrollary 9.1. In the case of equal costs and equal correlations, a

design in which both v and v 3 are positive is inadmissible, where

1 = nl = n2 = n3' and n123 = V3.

Proof: Use theorems 9.1 and 9.2.

Lemma 9.3: In the case * i = i'P" = p(i = 1,2,3), the condition vI = 0

implies that the optimal design must have v2 = 0, and the SM model is

optimal.

3 3 2
Proof: Let n 1 2 3 = V3" Our object is to maximize 0= m + 2P' - 3mp2

(m - 2) (m + 2p), subject to I = 3( 0 + 24) v2,+ + ( + 30)v, x1m +

x21, say where m = 2av' + by3 and P= dv2 + cv . Solving for (v 2 ,v 3)

we find

[ 2ac -bdV 3]-cd 2a uJ

Hence

xI = [(3c - d)4,0 + (6c - 3d)*]/(2ac - bd),

x 2 = (2a - 3b)%0 + 6(a - b)i]/(2ac - bd).

Now, we have

2 23c d = -0 (2 + P)!(1 - p2)(1 + 2P1,
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2c - d = -p 2 /(M + 2p)(1 - p2

2a - 3b 2[(l + p)2 _ p3 1/(1 - p 2)(1 + 2p),

a - L -p 2 /(1 - p 2 )(1 + 2p),

2ac - b= -2p2/(1 - p 2)(1 + 2p).

Hence

x= (1/2)(2 + p)$ 0 + (3/2), x 2 = [(1 + p)/p) _ p] o + 3.

Now U = (1 - xiM)/x and hence 0(m) = (1/x2 ) 3 [(x + x Im - i]

[Fx2 - 2x 1)m + 2]. This is a cubic polynomial in m, with coefficient of

3 havig the same sign as (x - 2x )(X, x being non-negative). "ut
22 1 2' 1

x2 - 2xI = [(i - p )(1 + 2p)/P2]W > 0. The equation 0(m) = 0, has a

double root m0 given 1ly m0  Fl(xI + x2) >2 0 (Xllx n). Also, ji has

a single root m [2/(2x - x)] < 0.

In the plane (v V 3), the cost constraint restricts the set in which

v-• want to maximize Q, to the line seM-ent between the two points,

[1/(3W0 + 6W), 0] and [0, I/(W0 + 31)]. This line seplment is transformed

to a line segment whose proiection on the m-axis is the interval (m', m")

where m' = a/(3/2WO + 3U), m" = b/($ 0 + 30].

Now a < b, which implies that m' < m". At this stape, we would li<e to

show that m' is larý'er th'an the value of the doulle root man. "ow M0

+ p)W + ( (+ + p)/p) Wr. -2 + a/21.11. Since a > 1, our obiect've

2
will he accomplished if we show That (1/2)(2 + P) + ( (I + o)/o) 2 - 3/2

> 0, or (1 + p)2 /0 - (1 + 0)1? = (1 + P)(2 + 2p - p'0 /(2p2 = r(l + 0

(Q + 2p + 1 - p2 )/(2p 2 )] > 0. This however, is always true. Thus 0), plotted

as a function of m, is tangent to the m ax~s at min, and is a monotone

increasing function of m for m >_ i0 . We conclude that Q achieves its
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restricted maximum at the point m" = b/(P0 + 30), for which 1j" c/((-0 +

34). The inverse image of the point (m", ii") in the (v 2 ,v 3 ) plane is the

Point [0, i/(i0 + 3•1). Thus the SM design is the optimal one as the

lemma states.

Lemma 9.4: In the case of equal costs and correlations, a design in which

S 3 = 0, cannot be optimal.

Proof: Assume that D(vi,vvl,v 21 V 21 V2" V 3) is an optimal design in which

V = 0. We will proceed to determine the exact values of v and V2). We

shall also adhere to the same scheme and notation as in tle proof of

Lemma 9.3. In the nresent case, we want to maximize 0 = (m -i)2(m + 210,

subject to 1 = 3(ý0 + )v + 3(in + 20)v2 = xIm + x2 , where m

2v1 + 2aV2 , ' = dv 2 . We find that xI = (3/2)(i0 + k) > 0, and that x 2 2

3(1 - a)0 /d + 3(2 - a)W/d = U 0/2+ 31P > 0. The coefficient of the cubic

term in O(m) 'as the same sign as x2 - 2x which is equal to (3/p2 0-

3 >0 > 0. The equation Q(m) = 0 has a double root m= [1/(x + X2 ,

and a single root m+ [2/(2x - x 2)] < 0. The line segment in the

(V1 ,V 2 ) plane dictated by the cost restriction is transformed into a

line segment whose projection on the m-axis in the (m,p) plane is the

interval (m',m"), where m' = [2/(340 + 310)] and m" = [2a/(3W0 + 640).

The fact a - 2 = [(2 - p)/(l - p 2)] - 2 =p 2(1 - p 2) > 0, implies that

m' < M". The double root m0 = [i/(x + x)] 1/[3 0(1/2 + 1/p )

+ (9/2)41 < i/[ 0(3/2) + (3/2)J] = m'. All this leads to the conclusion

that 0(m) achieves its restricted maximum at m" = [2a/(3* 0 + 61,

whose inverse image in the (v 1 , 2 ) plane is the point vi = 0 and
be

2 = l/(300 + 64). Thus the design D which was assumed to/optimal and
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had 03 = 0, must also have v1 = 0 and v2 = 1/(3p0 + 6p) > 0. But in

Lemma 9.3 we saw that if Vl = 0 then the optimal design must have

0 = 0. This leals to a contradiction and the proof is complete.

Theorem 9.3: In the case of equal costs and equal correlations, the

SM design is optimal.

Proof: This follows by using successively theorem 9.1, corollary 9.1,

and lemmas 9.9 and 9.3.
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